Synaptic modifications depend on synapse location and activity: a biophysical model of STDP.

نویسندگان

  • A Saudargiene
  • B Porr
  • F Wörgötter
چکیده

In spike-timing-dependent plasticity (STDP) the synapses are potentiated or depressed depending on the temporal order and temporal difference of the pre- and post-synaptic signals. We present a biophysical model of STDP which assumes that not only the timing, but also the shapes of these signals influence the synaptic modifications. The model is based on a Hebbian learning rule which correlates the NMDA synaptic conductance with the post-synaptic signal at synaptic location as the pre- and post-synaptic quantities. As compared to a previous paper [Saudargiene, A., Porr, B., Worgotter, F., 2004. How the shape of pre- and post-synaptic signals can influence stdp: a biophysical model. Neural Comp.], here we show that this rule reproduces the generic STDP weight change curve by using real neuronal input signals and combinations of more than two (pre- and post-synaptic) spikes. We demonstrate that the shape of the STDP curve strongly depends on the shape of the depolarising membrane potentials, which induces learning. As these potentials vary at different locations of the dendritic tree, model predicts that synaptic changes are location dependent. The model is extended to account for the patterns of more than two spikes of the pre- and post-synaptic cells. The results show that STDP weight change curve is also activity dependent.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spike timing dependent plasticity: mechanisms, significance, and controversies

Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...

متن کامل

Spike timing dependent plasticity: mechanisms, significance, and controversies

Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...

متن کامل

Mechanisms of Induction and Maintenance of Spike-Timing Dependent Plasticity in Biophysical Synapse Models

We review biophysical models of synaptic plasticity, with a focus on spike-timing dependent plasticity (STDP). The common property of the discussed models is that synaptic changes depend on the dynamics of the intracellular calcium concentration, which itself depends on pre- and postsynaptic activity. We start by discussing simple models in which plasticity changes are based directly on calcium...

متن کامل

Dendritic mechanisms controlling spike-timing-dependent synaptic plasticity.

The ability of neurons to modulate the strength of their synaptic connections has been shown to depend on the relative timing of pre- and postsynaptic action potentials. This form of synaptic plasticity, called spike-timing-dependent plasticity (STDP), has become an attractive model for learning at the single-cell level. Yet, despite its popularity in experimental and theoretical neuroscience, ...

متن کامل

Modulating STDP Balance Impacts the Dendritic Mosaic

The ability for cortical neurons to adapt their input/output characteristics and information processing capabilities ultimately relies on the interplay between synaptic plasticity, synapse location, and the nonlinear properties of the dendrite. Collectively, they shape both the strengths and spatial arrangements of convergent afferent inputs to neuronal dendrites. Recent experimental and theore...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Bio Systems

دوره 79 1-3  شماره 

صفحات  -

تاریخ انتشار 2005